## National Diagnostic Reference Levels in Japan (2025) - Japan DRLs 2025-

July, 7, 2025.

Japan Network for Research and Information on Medical Exposure (J-RIME) Japanese Association for Cancer Detection and Diagnosis Japan Association on Radiological Protection in Medicine Japan Gastroenterological Endoscopy Society Japan Health Physics Society Japan Pediatric Cardiac CT Alliance Japan Radiological Society Japan Society of Medical Physics Japanese Society for Neuroendovascular Therapy Japanese Society for Oral and Maxillofacial Radiology Japanese Society for Radiation Oncology Japanese Society of Interventional Radiology Japanese Society of Nuclear Medicine Japanese Society of Pediatric Radiology Japanese Society of Radiological Technology The Japan Association of Radiological Technologists The Japan Central Organization on Quality Assurance of Breast Cancer Screening The Japanese College of Medical Physics The Japanese Orthopaedic Association The Japanese Radiation Research Society The Japanese Society for Neuroendovascular Therapy The Japanese Society of Gastrointestinal Cancer Screening The Japanese Society of Nuclear Medicine Technology

#### In cooperation with the

Japan Medical Imaging and Radiological Systems Industries Association National Institutes for Quantum and Radiological Science and Technology

#### Preface

The Japan Network for Research and Information on Medical Exposure (J-RIME) has now published the *Diagnostic Reference Levels (2025 Edition)* (Japan DRLs 2025) through the collaborative efforts of its member academic societies. This achievement is entirely thanks to the generous contributions of many individuals and organizations.

Looking back, the first set of Diagnostic Reference Levels (DRLs) in Japan, titled *Establishment of Diagnostic Reference Levels Based on the Latest Domestic Survey Results: Diagnostic Reference Levels (DRLs 2015)*, was published in June 2015 under J-RIME's coordination. Five years later, in July 2020, the *Diagnostic Reference Levels (2020 Edition)* (Japan DRLs 2020) were released, and now, another five years on, we present the *Diagnostic Reference Levels (2025 Edition)*. In this latest edition, not only have the DRL values been revised, but the underlying concepts have also been clarified and systematically organized.

Over the past decade, both domestic and international efforts have continued to optimize medical exposure (i.e., patient exposure). Guidelines have been established, systems put in place, and education and training delivered, all contributing to improved radiological practices. Domestically, a landmark event was the revision of the Enforcement Regulations of the Medical Act related to radiological practices, which came into effect on April I, 2020. This revision introduced explicit safety management measures for radiological practices. Previously, radiation protection in medical settings had focused more on structural facilities, with limited reference to medical (patient) exposure. However, the amendment explicitly mandated that medical exposure be managed and the dose management be based on DRLs.

In other words, in Japan, DRLs were first established by academic societies prior to the enactment of corresponding legal regulations. In contrast, in Europe, for example, the European Union (EU) implemented regulations on the safety of medical radiation through Council Directive 97/43/Euratom in June 1997. This directive required the establishment of DRLs for diagnostic applications, which member states subsequently introduced—thereby it can be said that the establishment of DRLs came after the introduction of laws and regulations. Although Japan was slower than Europe in implementing DRLs, its approach was unique: DRLs were developed through the voluntary efforts of researchers and academic societies, which eventually led to the formation of relevant laws and regulations.

In recent years, opportunities have also emerged for discussions about national DRLs with radiological professionals in Asia and Africa. The universal significance of DRLs in radiological practices is thus becoming increasingly evident.

For the dose survey that informed the *Diagnostic Reference Levels (2025 Edition)*, a joint questionnaire was conducted across all modalities. This allowed for standardization and resulted in improved accuracy and efficiency. We express our sincere appreciation to all those involved for their cooperation in adopting this effective approach, built on the experience gained from the two previous surveys.

Some data from the recent survey indicate a reduction in radiation doses compared to previous results. This likely reflects the spread of improved safety management practices and advancements in dose-reducing technologies. While safety management remains essential, the ideal scenario is one where technological innovation enables excellent image quality at lower doses. We will continue to closely monitor such innovations and anticipate the benefits they will bring to radiological practices.

The development of the *Diagnostic Reference Levels (2025 Edition)* required tremendous effort and time. We take this opportunity to express our heartfelt gratitude to all individuals, medical institutions, academic societies, organizations, government agencies, and the J-RIME Secretariat who contributed to this achievement. We sincerely hope that the *Diagnostic Reference Levels (2025 Edition)* will be widely utilized as a key resource for enhancing the quality of radiological practices.

July 7, 2025

Japan Network for Research and Information on Medical Exposure (J-RIME) Representative Makoto Hosono

## Table of Contents

| ١. | Background of Establishment of Diagnostic Reference Levels (DRLs 2025) ····· I                 |
|----|------------------------------------------------------------------------------------------------|
| 2. | Objective of Establishing new Diagnostic Reference Levels ···································· |
|    | 2.1 Features of diagnostic reference levels (DRLs) ····································        |
|    | 2.2 Utilization of diagnostic reference levels in clinical settings ······3                    |
| 3. | National Diagnostic Reference Levels Established in 2025 (Japan DRLs 2025) $\cdot$ 5           |
|    | 3.1 Japan DRLs 2025 for Computed Tomography ••••••••••••••••••5                                |
|    | 3.1.1 Adult CT ••••••••5                                                                       |
|    | 3.1.2 Pediatric CT·······6                                                                     |
|    | 3.1.3 Pediatric cardiac CT ······8                                                             |
|    | 3.1.4 Treatment planning CT ······8                                                            |
|    | 3.2 Japan DRLs 2025 for General Radiography •••••••••••••••••••••••••••••••                    |
|    | 3.3 Japan DRLs 2025 for Mammography ······                                                     |
|    | 3.4 Japan DRLs 2025 for Dental X-ray Imaging                                                   |
|    | 3.4.1 Intraoral Radiography ······l0                                                           |
|    | 3.4.2 Panoramic Radiography ······l0                                                           |
|    | 3.4.3 Dental Cone Beam CT ······IO                                                             |
|    | 3.5 Japan DRLs 2025 for IVR •••••••••••••••••••••••••••••••••                                  |
|    | 3.5.  Head/Neck •••••••••••••••••                                                              |
|    | 3.5.2 Cardiac Regions (Adult) ······                                                           |
|    | 3.5.3 Cardiac Regions (Pediatric, age grouping) ·····                                          |
|    | 3.5.4 Cardiac Regions (Pediatric, weight grouping) ·····                                       |
|    | 3.5.5 Interventional radiography for chest and abdomen                                         |
|    | 3.5.6 EVT in the lower extremity ······                                                        |
|    | 3.6 Japan DRLs 2025 for Diagnostic Fluoroscopy······                                           |
|    | 3.6.1 Examination using a stationary X-ray fluoroscopy device ·······14                        |
|    | 3.6.2 Examination using a mobile X-ray fluoroscopy device ·······15                            |
|    | 3.6.3 Gastric X-ray screening ······                                                           |
|    | Mobile X-ray fluoroscopy device······                                                          |
|    | 3.7 Japan DRLs 2025 for Nuclear Medicine ·····                                                 |
|    | 3.7.1 SPECT radiopharmaceuticals ······16                                                      |
|    | 3.7.2 PET Radiopharmaceuticals                                                                 |
|    | 3.7.3 SPECT/CT Hybrid CT ·····20                                                               |
|    | 3.7.4 PET/CT Hybrid CT (medical examination) ······21                                          |
|    | 3.7.5 PET/CT Hybrid CT (medical checkup) ······21                                              |
| 4. | Acknowledgement ····································                                           |

## I. Background of Establishment of Diagnostic Reference Levels (DRLs 2025)

International guidelines—such as the recommendations of the International Commission on Radiological Protection (ICRP) and the International Basic Safety Standards of the International Atomic Energy Agency (IAEA)—identify Diagnostic Reference Levels (DRLs) as an essential tool for optimizing radiation protection in diagnostic imaging. This is because DRLs not only specify dose values, but also define various elements, including how the quantity is defined, measured, aggregated, and implemented. They are also closely linked to quality assurance in both equipment and procedures, thereby playing a critical role in the overall optimization process.

Regarding the international status of DRLs, Europe has established a comprehensive framework for medical radiation protection through the EU Council Directive 97/43/Euratom (June 1997), which mandates the adoption of DRLs by member states in the diagnostic field. As a result, DRLs have been implemented across EU countries. In the United States, DRLs published by organizations such as the American College of Radiology (ACR), the American Association of Physicists in Medicine (AAPM), and the National Council on Radiation Protection and Measurements (NCRP) have become de facto national standards.

In Japan, various organizations, academic societies, institutions, and researchers initially conducted independent surveys on diagnostic radiation doses and proposed what they considered standard values. However, these efforts often lacked sufficient coordination, and no widely accepted DRLs were established. To address this, the Japan Network for Research and Information on Medical Exposure (J-RIME)-an organization founded to share medical exposure research and promote collaborationestablished a DRL Working Group in August 2014, with representatives from its member organizations. Working under a unified platform, the group conducted a comprehensive review of dose definitions and survey methodologies, carried out a large-scale nationwide survey, and compiled and analyzed the data. The findings were then reviewed and discussed by the committee, incorporating feedback from domestic and international experts. Throughout the process, transparency and objectivity were prioritized. The resulting Diagnostic Reference Levels (2015 Edition) (DRLs 2015) became Japan's first nationally recognized DRLs and have since served as a foundational tool for promoting radiation protection and optimization across the country.

ICRP Publication 135, which outlines guidelines for the application of DRLs in diagnostic radiology, recommends that DRLs be reviewed and revised every three to five years. This ensures continued promotion of optimization and responsiveness to technological advances and evolving clinical needs. In line with this recommendation, J-RIME published the *Diagnostic Reference Levels (2020 Edition)* (DRLs 2020) five years after the initial edition. Around the same time, amendments to the Enforcement Regulations of the Medical Care Act were enacted, incorporating safety management measures for diagnostic radiation—leading to significant improvements in optimization efforts at individual facilities.

This second revision, *Diagnostic Reference Levels (2025 Edition)* (DRLs 2025), aims to further enhance participation rates by integrating dose surveys across multiple modalities to reduce the reporting burden on facilities. Additionally, increased outreach and promotional efforts by J-RIME's participating academic societies are expected to raise awareness. These efforts are anticipated to result in DRL values that more accurately reflect current clinical practices and conditions.

## 2. Objective of Establishing new Diagnostic Reference Levels

#### 2.1 Features of diagnostic reference levels (DRLs)

DRLs are tools designed to help facilities recognize when their radiation doses are higher than those used at comparable institutions, thereby encouraging optimization efforts. The ICRP defines a DRL as "a type of level for investigation, used as a tool to assist in optimizing protection in patients' medical exposure for diagnosis and interventional radiology (IVR)." <sup>(1)</sup> A DRL value is determined for each modality using a general, easily measurable indicator of ionizing radiation dose, typically based on dose survey data (e.g., the 75th percentile of the dose distribution).

It should be emphasized that a DRL is not a dose limit and should not be interpreted as a threshold for determining the appropriateness of a medical procedure. Dose limits are maximum permissible values that must not be exceeded under any circumstances. In contrast, a DRL may be exceeded if clinically justified. Furthermore, DRLs are intended for use with groups of patients or examinations—not to assess whether the dose for a single patient or exam is too high. This is because higher doses may be necessary depending on factors such as a patient's weight or body habitus.

DRLs may be established at the national, regional, or even local level, as equipment and procedural protocols can vary between institutions. The DRLs presented in this report represent national DRLs.

DRL values, often set at the 75th percentile of dose survey results, serve as benchmarks for identifying examinations, devices, or facilities that use comparatively high doses. In this report, each modality section includes not only the DRL value, but also the 75th percentile and median values of the corresponding dose distribution. If a facility's median dose exceeds the national median, this benchmark can serve as a useful reference point for further optimization. Conversely, if a facility's median is lower than the national median, optimization efforts can focus more on evaluating whether image quality and diagnostic performance remain clinically adequate, rather than prioritizing further dose reduction<sup>1)</sup>.

# 2.2 Utilization of diagnostic reference levels in clinical settings

Facilities should monitor the typical radiation doses used in their examinations. If the median dose exceeds the Diagnostic Reference Level (DRL) value, a review must be conducted to assess whether dose optimization is needed—unless there is a clinically justified reason not to do so. This review generally involves evaluating equipment performance and imaging protocols, identifying the causes of high doses, and implementing corrective measures to achieve optimized radiation doses. When implementing such measures, priority should be given to those that do not compromise image quality.

After changes have been made, the typical doses at the facility should be reassessed and compared again with the DRL values. According to *ICRP Publication 135*<sup>1)</sup>, dose surveys should be conducted annually for CT and interventional radiology (IVR), and every three years for other modalities—unless there are changes in equipment or other relevant factors. Additionally, imaging protocols for new equipment should be evaluated before clinical use, then re-evaluated within one year of implementation, once the new examination methods have stabilized.

Throughout this process, the fundamental goal is not to achieve the highest possible image quality, but rather the level of image quality necessary for accurate diagnosis. It must also be recognized that even a small reduction in diagnostic performance due to lower image quality can significantly undermine the risk-benefit balance of the examination.

The primary purpose of DRLs is optimization, not dose reduction for its own sake. If a clinically justified examination fails to provide the required diagnostic information, the exposure may ultimately be wasted. Therefore, when adjusting imaging conditions, it is essential to ensure that diagnostic image quality is maintained, not just that radiation doses are reduced.

To promote optimization, facilities must begin by comparing their own typical dose levels against the DRLs. The most effective method for this is to utilize dose display values provided by the imaging equipment. Ideally, the adoption of devices capable of displaying DRL-relevant dose metrics should become more widespread. For examinations where device display values are unavailable or difficult to use, or at facilities that lack dosimeters, comparison with DRLs can be more challenging. As an interim solution, methods such as the Normalized Dose Data (NDD) method<sup>2)</sup> or the use of existing dose calculation software can be considered. Additionally, establishing systems for the shared use of dosimeters or phantoms among affiliated organizations or neighboring institutions may also facilitate optimization efforts.

J-RIME Diagnostic Reference Level Working Group Chair: Masaaki Akahane

References:

- International Commission on Radiological Protection, 2017. Diagnostic Reference Levels in Medical Imaging. ICRP Publication 135. Ann. ICRP 46 (1)
- Mori T, Suzuki M, Sato H, et al. 1997 A Study of Creating Guidance Level in Medical Exposure [in Japanese]. Research reports of Suzuka University of Medical Science and Technology 4, 109-129.

# 3. National Diagnostic Reference Levels Established in 2025 (Japan DRLs 2025)

The following are recommended as national DRLs in Japan.

#### 3.1 Japan DRLs 2025 for Computed Tomography

#### 3.I.I Adult CT

| Protocol                                                 | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|----------------------------------------------------------|---------------------------|--------------|
| Routine brain                                            | 67                        | 1260         |
| Routine chest                                            | 11                        | 430          |
| Chest to pelvis                                          | 13                        | 940          |
| Abdomen and pelvis                                       | 14                        | 720          |
| Liver, multi-phase                                       | 13                        | 1630         |
| Coronary CTA                                             | 57                        | 940          |
| Prospective CTA                                          | 49                        | 770          |
| Coronary CT calcium scan                                 | 8                         | 160          |
| Acute pulmonary thromboembolism and deep vein thrombosis | 12                        | 2300         |
| Whole body CT for trauma                                 | n/a                       | 5290         |

Note I) Standard body weight is 50-70 kg

Note 2) Liver, multiphase does not include the chest or pelvis. CTDI and DLP are based on the average of all phases and the whole examinations, respectively.

- Note 3) For coronary CTA, CTDI and DLP of the CTA main scan
- Note 4) The CTDI and DLP for acute pulmonary thromboembolism and deep vein thrombosis are based on the first phase and whole examinations, respectively.
- Note 5) The DLP of whole-body CT for trauma includes the entire examination.

#### 3.1.2 Pediatric CT

#### Age grouping

|                           |                                                                 | CTDI <sub>VO </sub> [mGy]                                                                               | DLP [mGy·cm]                                                                |
|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                           | 0-<1y                                                           | 27                                                                                                      | 460                                                                         |
| Head                      | I-<5y                                                           | 34                                                                                                      | 610                                                                         |
|                           | 5- <i0y< td=""><td>44</td><td>810</td></i0y<>                   | 44                                                                                                      | 810                                                                         |
|                           | 10-<15y                                                         | 55                                                                                                      | 1000                                                                        |
|                           |                                                                 | CTDI <sub>VO </sub> [mGy]                                                                               | DLP [mGy·cm]                                                                |
|                           | 0-<1y                                                           | 2.0                                                                                                     | 50                                                                          |
| Chest                     | I-<5y                                                           | 3.0                                                                                                     | 80                                                                          |
|                           | 5-<10y                                                          | 4.0                                                                                                     | 120                                                                         |
|                           | 10-<15y                                                         | 6.0                                                                                                     | 230                                                                         |
|                           |                                                                 |                                                                                                         |                                                                             |
|                           |                                                                 | CTDI <sub>VO </sub> [mGy]                                                                               | DLP [mGy·cm]                                                                |
|                           | 0-<1y                                                           | CTDI <sub>VOI</sub> [mGy]<br>2.5                                                                        | DLP [mGy·cm]<br>70                                                          |
| Abdomen                   | 0-<1y<br>1-<5y                                                  | CTDI <sub>VO</sub> [mGy]<br>2.5<br>3.4                                                                  | DLP [mGy·cm]<br>70<br>120                                                   |
| Abdomen                   | 0-<1y<br>1-<5y<br>5-<10y                                        | CTDI <sub>VO</sub> [mGy]<br>2.5<br>3.4<br>4.5                                                           | DLP [mGy·cm]<br>70<br>120<br>180                                            |
| Abdomen                   | 0-<1y<br>1-<5y<br>5-<10y<br>10-<15y                             | CTDI <sub>VO</sub> [mGy]<br>2.5<br>3.4<br>4.5<br>7.0                                                    | DLP [mGy·cm]<br>70<br>120<br>180<br>340                                     |
| Abdomen                   | 0-<1y<br>1-<5y<br>5-<10y<br>10-<15y                             | CTDI <sub>VO1</sub> [mGy]<br>2.5<br>3.4<br>4.5<br>7.0<br>CTDI <sub>VO1</sub> [mGy]                      | DLP [mGy·cm]<br>70<br>120<br>180<br>340<br>DLP [mGy·cm]                     |
| Abdomen                   | 0-<1y<br>1-<5y<br>5-<10y<br>10-<15y<br>0-<1y                    | CTDI <sub>VO</sub> [mGy]<br>2.5<br>3.4<br>4.5<br>7.0<br>CTDI <sub>VO</sub> [mGy]<br>2.0                 | DLP [mGy·cm]<br>70<br>120<br>180<br>340<br>DLP [mGy·cm]<br>80               |
| Abdomen<br>Neck to pelvis | 0-<1y<br>1-<5y<br>5-<10y<br>10-<15y<br>0-<1y<br>1-<5y           | CTDI <sub>VO</sub> [mGy]<br>2.5<br>3.4<br>4.5<br>7.0<br>CTDI <sub>VO</sub> [mGy]<br>2.0<br>2.8          | DLP [mGy·cm]<br>70<br>120<br>180<br>340<br>DLP [mGy·cm]<br>80<br>145        |
| Abdomen<br>Neck to pelvis | 0-<1y<br>1-<5y<br>5-<10y<br>10-<15y<br>0-<1y<br>1-<5y<br>5-<10y | CTDI <sub>VOI</sub> [mGy]<br>2.5<br>3.4<br>4.5<br>7.0<br>CTDI <sub>VOI</sub> [mGy]<br>2.0<br>2.8<br>4.0 | DLP [mGy⋅cm]<br>70<br>120<br>180<br>340<br>DLP [mGy⋅cm]<br>80<br>145<br>220 |

Note 1) The head doses are based on a 16 cm diameter standard CT dosimetry phantom and the body doses are based on a 32 cm diameter standard CT dosimetry phantom.

Note 2) The scan range for the abdomen is from the upper abdomen to the pelvis.

Weight grouping

|                |           | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|----------------|-----------|---------------------------|--------------|
|                | < 5 kg    | 2.0                       | 35           |
| Chest          | 5-<15 kg  | 3.0                       | 60           |
|                | 15-<30 kg | 4.0                       | 120          |
|                | 30-<50 kg | 6.0                       | 225          |
|                |           | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|                | < 5 kg    | 2.5                       | 65           |
| Abdomen        | 5-<15 kg  | 4.0                       | 140          |
|                | 15-<30 kg | 4.0                       | 180          |
|                | 30-<50 kg | 7.0                       | 310          |
|                |           | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|                | < 5 kg    | 2.0                       | 66           |
| Neck to pelvis | 5-<15 kg  | 3.0                       | 130          |
|                | 15-<30 kg | 4.0                       | 230          |
|                | 30-<50 kg | 7.0                       | 520          |

Note I) The head doses are based on a 16 cm diameter standard CT dosimetry phantom and the body doses are based on a 32 cm diameter standard CT dosimetry phantom.

Note 2) The scan range for the abdomen is from the upper abdomen to the pelvis.

#### 3.1.3 Pediatric cardiac CT

#### Age grouping

|         |                                                | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|---------|------------------------------------------------|---------------------------|--------------|
|         | 0-<1y                                          | 1.5                       | 26           |
| Cardiac | I-<5y                                          | 1.9                       | 47           |
|         | 5- <i0y< td=""><td>2. I</td><td>64</td></i0y<> | 2. I                      | 64           |
|         | 10-<15y                                        | 7.9                       | 280          |

Note I) Doses refer to the 32 cm standard CT dosimetry phantom.

#### Weight grouping

|         |           | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|---------|-----------|---------------------------|--------------|
|         | < 3 kg    | 1.1                       | 18           |
|         | 3-<5 kg   | 1.2                       | 20           |
| Cardiac | 5-<10 kg  | 2.6                       | 49           |
|         | 10-<20 kg | 3.2                       | 54           |
|         | 20-<40 kg | 4.1                       | 120          |
|         | 40-<60 kg | 9.6                       | 200          |

Note I) Doses refer to the 32 cm standard CT dosimetry phantom.

#### 3.1.4 Treatment planning CT

| Irradiation technique | CTDI <sub>VO </sub> [mGy] | DLP [mGy·cm] |
|-----------------------|---------------------------|--------------|
| Brain STI             | 92                        | 2810         |
| Head & Neck IMRT      | 33                        | 1300         |
| Lung SBRT             | 86                        | 2420         |
| Breast RT             | 23                        | 930          |
| Prostate IMRT         | 32                        | 1160         |

STI: Stereotactic Irradiation, IMRT: Intensity Modulated Radiotherapy

SBRT: Stereotactic Body Radiotherapy

- Note I) Standard body weight was 40-80 kg.
- Note 2)  $\mathrm{CTDI}_{\mathrm{vol}}$  and DLP are the sum of the whole examination
- Note 3) Dose for Brain STI refer to the 16 cm standard CT dosimetry phantom, others refer to the 32 cm.

## 3.2 Japan DRLs 2025 for General Radiography

| Examination                           | Entrance-surface air kerma K <sub>a,e</sub> [mGy] |
|---------------------------------------|---------------------------------------------------|
| Chest PA (<100 kV)                    | 0.3                                               |
| Chest PA ( $\geq$ 100 kV)             | 0.2                                               |
| Chest PA (medical checkup) (≥ 100 kV) | 0.2                                               |
| Abdomen (AP supine)                   | ١.4                                               |
| Infant hip joint (0-ly)               | 0.1                                               |
| Infant chest (O-I y)                  | 0.1                                               |
| Child chest (5 y)                     | 0.1                                               |
| Child hip joint (5y)                  | 0.2                                               |
| Child whole spine (5y)                | 0.2                                               |
| Child whole spine (10y)               | 0.3                                               |
| Skull                                 | 1.3                                               |
| Cervical spine                        | 0.5                                               |
| Thoracic spine                        | 1.8                                               |
| Thoracic spine LAT                    | 3.4                                               |
| Lumbar spine                          | 2.5                                               |
| Lumbar spine LAT                      | 5.5                                               |
| Pelvis                                | 1.7                                               |

## 3.3 Japan DRLs 2025 for Mammography

|                                                           | Mean glandular dose D <sub>G</sub><br>[mGy] |
|-----------------------------------------------------------|---------------------------------------------|
| 2D mammography based on clinical data                     | 1.4                                         |
| Digital breast tomosynthesis (DBT) based on clinical data | 1.6                                         |
| PMMA 40 mm                                                | 2.2                                         |

#### 3.4 Japan DRLs 2025 for Dental X-ray Imaging

#### 3.4.1 Intraoral Radiography

| Examination site |          | Incident air kerma K <sub>a,i</sub> [mGy] <sup>Note I)</sup> |               |
|------------------|----------|--------------------------------------------------------------|---------------|
|                  |          | Adult Note 2)                                                | Child Note 3) |
|                  | Incisor  | 1.1                                                          | 0.8           |
| Maxilla          | Canine   | 1.2                                                          | 0.8           |
| Maxiila          | Premolar | 1.3                                                          | 1.0           |
|                  | Molar    | 1.9                                                          | 1.2           |
|                  | Incisor  | 0.9                                                          | 0.6           |
| Mandihlo         | Canine   | 1.0                                                          | 0.7           |
| Manarbre         | Premolar | 1.1                                                          | 0.8           |
|                  | Molar    | 1.3                                                          | 1.0           |

Note I) Air kerma at the cone-tip without patient backscatter

Note 2) Adult patients with standard body size

Note 3) Ten-year-old pediatric patients

#### 3.4.2 Panoramic Radiography

| Air kerma-area product P <sub>KA</sub> [mGy·cm²] | Dose-width product DWP Note 1) [mGy·mm] |
|--------------------------------------------------|-----------------------------------------|
| 130                                              | 91                                      |

Note I) Value on the surface of image receptor

#### 3.4.3 Dental Cone Beam CT

| FOV area <sup>Note I)</sup> | Air kerma-area product P <sub>KA</sub> | Air kerma at the isocenter K <sub>iso</sub> |
|-----------------------------|----------------------------------------|---------------------------------------------|
|                             |                                        |                                             |
| <40 cm <sup>2</sup>         | 720                                    | 17                                          |
| $40 \sim 100 \text{ cm}^2$  | 1500                                   | 17                                          |
| $> 100 \text{ cm}^2$        | 2200                                   | 17                                          |

Note I) FOV area = FOV diameter x height

## 3.5 Japan DRLs 2025 for IVR

## 3.5.1 Head/Neck

| Diagnostic Angiography (pre-op)            | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy·cm <sup>2</sup> ] |
|--------------------------------------------|------------------------|---------------------------------------|
| Saccular aneurysm                          | 470                    | 82                                    |
| Cerebral arteriovenous malformation        | 680                    | 120                                   |
| Cerebral dural arteriovenous fistula       | 840                    | 170                                   |
| Cervical carotid artery stenosis/occlusion | 390                    | 81                                    |
| Acute cerebral artery stenosis/occlusion   | 490                    | 96                                    |
| Intracranial tumor                         | 530                    | 110                                   |
| Diagnostic Angiography (post-op)           | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy·cm <sup>2</sup> ] |
| Saccular aneurysm                          | 410                    | 56                                    |
| Cerebral arteriovenous malformation        | 450                    | 82                                    |
| Cerebral dural arteriovenous fistula       | 610                    | 120                                   |
| Cervical carotid artery stenosis/occlusion | 330                    | 64                                    |
| Acute cerebral artery stenosis/occlusion   | 450                    | 73                                    |
| Intracranial tumor                         | 560                    | 100                                   |
| Endovascular treatment (IVR)               | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy·cm <sup>2</sup> ] |
| Saccular aneurysm                          | 2400                   | 190                                   |
| Cerebral arteriovenous malformation        | 3700                   | 330                                   |
| Cerebral dural arteriovenous fistula       | 4300                   | 450                                   |
| Cervical carotid artery stenosis/occlusion | 700                    | 130                                   |
| Acute cerebral artery stenosis/occlusion   | 1000                   | 160                                   |
| Intracranial tumor                         | 1900                   | 230                                   |

#### 3.5.2 Cardiac Regions (Adult)

|                              | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy⋅cm²] |
|------------------------------|------------------------|--------------------------|
| Diagnostic catheterization   | 520                    | 47                       |
| Non-CTO PCI                  | 1300                   | 100                      |
| CTO PCI                      | 2500                   | 200                      |
| Non-PVI RFCA                 | 200                    | 27                       |
| PVI RFCA                     | 260                    | 38                       |
| TAVI (transfemoral approach) | 530                    | 78                       |

PCI: Percutaneous Coronary Intervention

CTO: Chronic Total Occlusion

RFCA: Radiofrequency Catheter Ablation

PVI: Pulmonary Vein Isolation

TAVI : Transcatheter Aortic Valve Implantation

#### 3.5.3 Cardiac Regions (Pediatric, age grouping)

| Diagnostic catheterization                                           | K <sub>a,r</sub> [mGy]                      | P <sub>KA</sub> [Gy∙cm²]                               |
|----------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| <  year                                                              | 64                                          | 4                                                      |
| ∣ ~<5 years                                                          | 83                                          | 6                                                      |
| 5 ~<10 years                                                         | 93                                          | 11                                                     |
| 10 ~<15 years                                                        | 220                                         | 29                                                     |
|                                                                      |                                             |                                                        |
| Interventional radiography                                           | K <sub>a,r</sub> [mGy]                      | P <sub>KA</sub> [Gy∙cm²]                               |
| Interventional radiography<br><  year                                | K <sub>a,r</sub> [mGy]<br>100               | P <sub>KA</sub> [Gy·cm²]<br>7                          |
| Interventional radiography<br><  year<br>  ~<5 years                 | K <sub>α,r</sub> [mGy]<br>100<br>130        | P <sub>KA</sub> [Gy·cm²]<br>7<br>11                    |
| Interventional radiography<br><1 year<br>1 ~<5 years<br>5 ~<10 years | K <sub>α,r</sub> [mGy]<br>100<br>130<br>160 | Р <sub>КА</sub> [Gy·cm <sup>2</sup> ]<br>7<br>11<br>16 |

| Diagnostic catheterization                                       | K <sub>a,r</sub> [mGy]                     | P <sub>KA</sub> [Gy∙cm²]                 |
|------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| <5 kg                                                            | 47                                         | 3                                        |
| 5 ~< 15 kg                                                       | 69                                         | 6                                        |
| 5 ∼< 30 kg                                                       | 100                                        | 12                                       |
| > 30 kg                                                          | 230                                        | 33                                       |
|                                                                  |                                            |                                          |
| Interventional radiography                                       | K <sub>a,r</sub> [mGy]                     | P <sub>KA</sub> [Gy⋅cm²]                 |
| Interventional radiography<br><5 kg                              | K <sub>a,r</sub> [mGy]<br>67               | P <sub>KA</sub> [Gy∙cm²]<br>4            |
| Interventional radiography<br><5 kg<br>5 ~< 15 kg                | K <sub>a,r</sub> [mGy]<br>67<br>120        | P <sub>KA</sub> [Gy·cm²]<br>4<br>9       |
| Interventional radiography<br><5 kg<br>5 ~< 15 kg<br>15 ~< 30 kg | K <sub>a,r</sub> [mGy]<br>67<br>120<br>140 | P <sub>KA</sub> [Gy·cm²]<br>4<br>9<br>16 |

#### 3.5.4 Cardiac Regions (Pediatric, weight grouping)

#### 3.5.5 Interventional radiography for chest and abdomen

|                              | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy∙cm²] |
|------------------------------|------------------------|--------------------------|
| TACE                         | 1200                   | 220                      |
| TEVAR                        | 630                    | 170                      |
| EVAR                         | 910                    | 200                      |
| UAE uterine fibroids         | 710                    | 150                      |
| PAVM simple type             | 870                    | 150                      |
| BRTO via the left renal vein | 1100                   | 230                      |

 $\ensuremath{\mathsf{TACE}}$  :  $\ensuremath{\mathsf{Transcatheter}}$  Arterial Chemoembolization

TEVAR : Thoracic Endovascular Aortic Repair

 $\ensuremath{\mathsf{EVAR}}$  : Endova<br/>scular Aortic Repair

UAE: Uterine Artery Embolization

PAVM : Pulmonary Arteriovenous Malformations

BRTO: Balloon occluded Retrograde Transvenous Obliteration

#### 3.5.6 EVT in the lower extremity

|                        | K <sub>a,r</sub> [mGy] | P <sub>KA</sub> [Gy·cm <sup>2</sup> ] |
|------------------------|------------------------|---------------------------------------|
| Non-CTO iliac artery   | 360                    | 69                                    |
| CTO iliac artery       | 740                    | 120                                   |
| Non-CTA femoral artery | 160                    | 36                                    |
| CTA femoral artery     | 310                    | 54                                    |

EVT: Endovascular Therapy

CTO: Chronic Total Occlusion

#### 3.6 Japan DRLs 2025 for Diagnostic Fluoroscopy

#### 3.6.1 Examination using a stationary X-ray fluoroscopy device

|                                                                               | K <sub>a,r</sub><br>[mGy] | P <sub>KA</sub><br>[Gy·cm²] | Fluoroscopic<br>time [min] | No. of<br>images per<br>exam |
|-------------------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|
| Barium swallow                                                                | 16                        | 6.5                         | 5.0                        | 4.0                          |
| Upper gastrointestinal<br>fluoroscopy with contrast                           | 77                        | 21                          | 6.5                        | 23                           |
| Ileus tube insertion                                                          | 80                        | 47                          | 20                         | 6.0                          |
| Barium enema                                                                  | 93                        | 41                          | 12                         | 26                           |
| ERCP                                                                          | 110                       | 28                          | 15                         | 13                           |
| Bronchoscopy                                                                  | 27                        | 7.4                         | 8.7                        | 2.0                          |
| Total parenteral nutrition<br>catheterization<br>(CV catheter-port insertion) | 7.6                       | 3.2                         | 2.7                        | 2.0                          |
| Lumbar nerve root block                                                       | 22                        | 5.5                         | 3.0                        | 2.0                          |
| Lumbar myelography                                                            | 47                        | 18                          | 3.9                        | 10                           |

ERCP: Endoscopic retrograde cholangiopancreatography

CV: Central venous

Note I) Only over-table X-ray tubes are applicable.

Note 2)  $K_{\alpha,\,r}:$  Incident air kerma at the patient entrance reference point

Note 3)  $P_{KA}$ : KAP : Air kerma area product

Note 4)

|                                                          | K <sub>a,r</sub><br>[mGy] | P <sub>KA</sub><br>[Gy∙cm²] | Fluoroscopic<br>time [min] | No. of<br>images per<br>exam |
|----------------------------------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|
| Spinal fusion (cervical)                                 | 10                        | 3.7                         | 4.6                        | 2.0                          |
| Spinal fusion (cervical-<br>thoracic junction and below) | 110                       | 23                          | 10                         | 2.0                          |
| Scoliosis correction                                     | (100)                     | (11)                        | 10                         | 1.0                          |
| Open fracture surgery (thigh)                            | 57                        | 9.6                         | 10                         | 2.0                          |

#### 3.6.2 Examination using a mobile X-ray fluoroscopy device

Note 1) In Scoliosis correction, (K<sub>a,r</sub>) and (P<sub>KA</sub>) are reference values due to limited data.

#### 3.6.3 Gastric X-ray screening

|                                                                     | K <sub>a,r</sub><br>[mGy] | P <sub>KA</sub><br>[Gy∙cm²] | Fluoroscopic<br>time [min] | No. of<br>images per<br>exam |
|---------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|
| Population-based<br>radiographic technique<br>(standard inspection) | 39                        | _                           | 2.5                        | 9.0                          |
| Opportunistic radiographic<br>technique<br>(standard inspection)    | 55                        | _                           | 4.2                        | 17                           |

Reference values for fluoroscopy dose rate and radiographic dose of stationary and mobile X-ray fluoroscopy devices

|                                        | Fluoroscopy dose rate | Radiographic dose |
|----------------------------------------|-----------------------|-------------------|
|                                        | [mGy/min]             | [mGy/ exposure]   |
| Stationary X-ray fluoroscopy<br>device | 10                    | 1.6               |
| Mobile X-ray fluoroscopy<br>device     | 13                    | 1.3               |

Note 1) The entrance surface air kerma including backscatter was measured at the patient entrance reference point or an equivalent position, with a 20 cm acrylic phantom placed on the patient table.

## 3.7 Japan DRLs 2025 for Nuclear Medicine

## 3.7.1 SPECT radiopharmaceuticals

| Radiopharmaceutical                                            | Dose [MBq] |
|----------------------------------------------------------------|------------|
| Bone: <sup>qq</sup> mTc-MDP                                    | 930        |
| Bone: <sup>qq</sup> mTc-HMDP                                   | 930        |
| Bone marrow: ""In-chloride                                     | 80         |
| Cerebral blood flow: <sup>qq</sup> mTc-HMPAO (rest or stress)  | 800        |
| Cerebral blood flow: <sup>qq</sup> mTc-HMPAO (rest and stress) | 1200       |
| Cerebral blood flow: <sup>qq</sup> mTc-ECD (rest or stress)    | 800        |
| Cerebral blood flow: <sup>qq</sup> mTc-ECD (rest and stress)   | 1100       |
| Cerebral blood flow: <sup>123</sup> I-IMP (rest or stress)     | 200        |
| Cerebral blood flow: <sup>123</sup> I-IMP (rest and stress)    | 270        |
| Brain receptors: <sup>123</sup> I-iomazenil                    | 200        |
| Striatum: <sup>123</sup> I-ioflupane                           | 190        |
| Cisternography: "In-DTPA                                       | 40         |
| Thyroid uptake: Na <sup>123</sup> I                            | 10         |
| Thyroid: <sup>qq</sup> mTcO <sub>4</sub> -                     | 240        |
| Parathyroid: <sup>201</sup> Tl-chloride                        | 120        |
| Parathyroid: <sup>qq</sup> mTcO <sub>4</sub> -                 | 300        |
| Parathyroid: <sup>qq</sup> mTc-MIBI                            | 800        |
| Lung ventilation: <sup>8Im</sup> Kr-gas                        | 190        |
| Lung ventilation: <sup>qqm</sup> Tc-gas                        | 750        |
| Pulmonary blood flow: <sup>qq</sup> mTc-MAA                    | 260        |
| Radionuclide venography: <sup>qq</sup> mTc-MAA                 | 500        |
| Liver/spleen: <sup>qq</sup> mTc-phytate                        | 190        |
| Hepatic function: <sup>qqm</sup> Tc-GSA                        | 260        |
| Hepatobiliary: <sup>qq</sup> mTc-PMT                           | 260        |
| Liver and spleen: <sup>qqm</sup> Tc-Sn colloid                 | 180        |
| Myocardial perfusion: <sup>201</sup> Tl-chloride (rest)        | 120        |
| Myocardial perfusion: <sup>201</sup> Tl-chloride (stress)      | 120        |

| Radiopharmaceutical                                                  | Dose [MBq] |
|----------------------------------------------------------------------|------------|
| Myocardial perfusion: <sup>201</sup> Tl-chloride (rest and stress)   | 120        |
| Myocardial perfusion: <sup>99</sup> mTc-tetrofosmin (rest or stress) | 840        |
| Myocardial perfusion: 99mTc-tetrofosmin (rest and stress)            | 1200       |
| Myocardial perfusion: <sup>99</sup> mTc-MIBI (rest or stress)        | 840        |
| Myocardial perfusion: <sup>99</sup> mTc-MIBI (rest and stress)       | 1200       |
| Myocardial fatty acid metabolism: <sup>123</sup> I-BMIPP             | 130        |
| Cardiac sympathetic function: <sup>123</sup> I-MIBG                  | 130        |
| Cardiac blood pool: <sup>99</sup> mTc-HSA-D                          | 970        |
| Myocardial infarction: <sup>99</sup> mTc-PYP                         | 840        |
| Cardiac amyloidosis: <sup>99</sup> mTc-PYP                           | 840        |
| Cardiac amyloidosis: <sup>99</sup> mTc-HMDP                          | 870        |
| Salivary gland: <sup>qq</sup> mTcO <sub>4</sub> -                    | 370        |
| Meckel's diverticulum: <sup>qq</sup> mTcO4 <sup>-</sup>              | 440        |
| Gastrointestinal bleeding: <sup>99</sup> mTc-HSA-D                   | 1000       |
| Protein leakage: <sup>99</sup> mTc-HSA-D                             | 1000       |
| Static renal imaging: <sup>99</sup> mTc-DMSA                         | 210        |
| Dynamic renal imaging: <sup>99</sup> mTc-MAG 3                       | 380        |
| Dynamic renal imaging: <sup>99</sup> mTc-DTPA                        | 380        |
| Adrenal cortex: <sup>131</sup> I-adosterol                           | 40         |
| Adrenal medulla: <sup>123</sup> I-MIBG                               | 130        |
| Testis: <sup>qq</sup> mTc-HSA-D                                      | 850        |
| Tumor: <sup>201</sup> Tl-chloride                                    | 120        |
| Tumor and inflammation: <sup>67</sup> Ga-citrate                     | 120        |
| Somatostatin receptor: "'In-pentetreotide                            | 220        |
| Lymphatic vessels: <sup>qq</sup> mTc-HSA-D                           | 830        |
| Sentinel lymph node (breast cancer): <sup>qq</sup> mTc-Sn colloid    | 120        |
| Sentinel lymph node (breast cancer): <sup>qq</sup> mTc-phytate       | 120        |
| Sentinel lymph node (melanoma): <sup>99</sup> mTc-Sn colloid         | 120        |
| Sentinel lymph node (melanoma): <sup>99</sup> mTc-phytate            | 120        |

| Radiopharmaceutical                                                   | Dose [MBq] |
|-----------------------------------------------------------------------|------------|
| Sentinel lymph node (endometrial cancer): <sup>99m</sup> Tc-phytate   | 120        |
| Sentinel lymph node (cervical cancer): <sup>99</sup> mTc-phytate      | 120        |
| Sentinel lymph node (vulvar cancer): <sup>99</sup> mTc-phytate        | 120        |
| Sentinel lymph node (head and neck cancer): <sup>qq</sup> mTc-phytate | 120        |
| RI angiography: <sup>99</sup> Tc-HSA-D                                | 1000       |

#### 3.7.2 PET Radiopharmaceuticals

| Radiopharmaceutical                                                       | Dose [MBq] |
|---------------------------------------------------------------------------|------------|
| Brain function: C <sup>15</sup> O <sub>2</sub> -gas (2D acquisition)      | 8000       |
| Brain function: <sup>15</sup> 0 <sub>2</sub> -gas (2D acquisition)        | 6000       |
| Brain function: C <sup>15</sup> O -gas (2D acquisition)                   | 3000       |
| Brain function: C <sup>15</sup> O <sub>2</sub> -gas (3D acquisition)      | 1800       |
| Brain function: <sup>15</sup> 0 <sub>2</sub> -gas (3D acquisition)        | 4500       |
| Brain function: C <sup>15</sup> O-gas (3D acquisition)                    | 3600       |
| Amyloid: <sup>18</sup> F-flutemetamol (in-house preparation)              | 260        |
| Amyloid: <sup>18</sup> F-flutemetamol (delivery)                          | 260        |
| Amyloid: <sup>18</sup> F-florbetapir (in-house preparation)               | 370        |
| Amyloid: <sup>18</sup> F-florbetapir (delivery)                           | 370        |
| Amyloid: <sup>18</sup> F-florbetaben (in-house preparation)               | 300        |
| Cerebral glucose metabolism: <sup>18</sup> F-FDG (in-house preparation)   | 230        |
| Cerebral glucose metabolism: <sup>18</sup> F-FDG (delivery)               | 230        |
| Cerebral glucose metabolism: <sup>18</sup> F-FDG (dose per body weight)   | 4          |
| Malignant glioma: <sup>18</sup> F-Fluciclovine (delivery)                 | 270        |
| Malignant glioma: <sup>18</sup> F-Fluciclovine (dose per body weight)     | 5          |
| Myocardial glucose metabolism: <sup>18</sup> F-FDG (in-house preparation) | 240        |
| Myocardial glucose metabolism: <sup>18</sup> F-FDG (delivery)             | 240        |
| Myocardial glucose metabolism: <sup>18</sup> F-FDG (dose per body weight) | 4          |
| Myocardial blood flow: $^{13}NH_3$ (in-house preparation)                 | 520        |
| Tumor glucose metabolism: <sup>18</sup> F-FDG (in-house preparation)      | 240        |
| Tumor glucose metabolism: <sup>18</sup> F-FDG (delivery)                  | 240        |
| Tumor glucose metabolism: <sup>18</sup> F-FDG (dose per body weight)      | 4          |
| Inflammation: <sup>18</sup> F-FDG (in-house preparation)                  | 240        |
| Inflammation: <sup>18</sup> F-FDG (delivery)                              | 240        |
| Inflammation: <sup>18</sup> F-FDG (dose per body weight)                  | 4          |

Note I) This criterion was set for amyloid (18F-flutemetamol, 18F-florbetapir, 18Fflorbetaben) by referring to the package insert.

## 3.7.3 SPECT/CT Hybrid CT

| Body region                                     | CTDI <sub>vol</sub> [mGy] | DLP [mGy·cm] |
|-------------------------------------------------|---------------------------|--------------|
| Whole body                                      | 4.0                       | 310          |
| Head and neck                                   | 5.4                       | 170          |
| Chest                                           | 4.2                       | 130          |
| Upper abdomen                                   | 4.8                       | 130          |
| Pelvis                                          | 3.                        | 110          |
| Abdomen, pelvis (upper abdomen - pelvis)        | 3.9                       | 140          |
| Head and neck - pelvis                          | 4.1                       | 260          |
| Extremities                                     | 3.                        | 160          |
| Brain (Attenuation correction only)             | 12                        | 210          |
| Brain (Attenuation correction and image fusion) | 25                        | 370          |
| Heart (Attenuation correction only)             | 2.9                       | 70           |
| Heart (Attenuation correction and image fusion) | 4.1                       | 90           |

| Body region                                     | CTDI <sub>vol</sub> [mGy] | DLP [mGy·cm] |
|-------------------------------------------------|---------------------------|--------------|
| Whole body:head - proximal thighs               | 5.4                       | 540          |
| Whole body:head - lower extremities             | 5.3                       | 720          |
| Head and neck                                   | 4.2                       | 130          |
| Chest                                           | 4.5                       | 150          |
| Upper abdomen                                   | 4.4                       | 140          |
| Pelvis                                          | 3.2                       | 120          |
| Upper abdomen - pelvis                          | 5.0                       | 220          |
| Chest - pelvis                                  | 4.4                       | 300          |
| Extremities                                     | 2.7                       | 130          |
| Brain (Attenuation correction only)             | 10                        | 270          |
| Brain (Attenuation correction and image fusion) | 26                        | 570          |
| Heart (Attenuation correction only)             | 2.5                       | 50           |
| Heart (Attenuation correction and image fusion) | 4.7                       | 140          |

## 3.7.4 PET/CT Hybrid CT (medical examination)

#### 3.7.5 PET/CT Hybrid CT (medical checkup)

| Body region                                     | CTDI <sub>vol</sub> [mGy] | DLP [mGy·cm] |
|-------------------------------------------------|---------------------------|--------------|
| Whole body:head - proximal thighs               | 5.4                       | 540          |
| Brain (Attenuation correction only)             | 10                        | 270          |
| Brain (Attenuation correction and image fusion) | 27                        | 570          |
| Heart (Attenuation correction only)             | 2.5                       | 50           |
| Heart (Attenuation correction and image fusion) | 4.7                       | 140          |

## 4. Acknowledgement

Contributors to drafting, reviewing and performing dose surveys

| ABE, KOICHIRO         | AKAHANE, MASAAKI    | ARAI, KAZUMASA      | ARAI, TOMOHIRO      |
|-----------------------|---------------------|---------------------|---------------------|
| ASADA, YASUKI         | ASAUMI, RIEKO       | AWAI, KAZUO         | BABA, SHINGO        |
| CHANG WEISHAN         | ENDO, ATSUSHI       | ETANI, REO          | FUJIBUCHI, TOSHIO   |
| FUJIMOTO, TAKAHIRO    | FUJITA, YUKIO       | FUKUNAGA, MASAAKI   | GOTO, KENICHI       |
| GOTO, MARIKO          | HARATA, YASUO       | HASEGAWA, TAKAYUKI  | HIRAKAWA, MASAKAZU  |
| HIROFUJI, YOSHIAKI    | HOSONO, MAKOTO      | IGARASHI, TAKAYUKI  | IIMORI, TAKASHI     |
| INAKI, ANRI           | ISHIBASHI, TORU     | ISHIGURO, MSANOBU   | ITO, HARUMI         |
| IZAWA, MAKI           | KATO, HIDEYUKI      | KATO, MAMORU        | KAWAI, TAISUKE      |
| KAWANAMI, RYOTA       | KAWANAMI, SATOSHI   | KAWAUCHI, SATORU    | KAWAURA, CHIYO      |
| KITO, SATOSHI         | KITO, SHINJI        | KOBA, YUSUKE        | KOBAYASHI, IKUO     |
| KODAMA, TAKUMI        | KOJIMA, IKUHO       | KUBOTA, KAZUNORI    | KUROOKA, MASAHIKO   |
| MASUDA, TAKANORI      | MATSUBARA, KOSUKE   | MATSUI, YUSUKE      | MATSUMOTO, KUNIHIKO |
| MATSUMOTO, SHINNOSUKE | MIMOTO, SHINICHI    | MISHIMA, AKIRA      | MIYAJI, NORIAKI     |
| MIYAJIMA, RYUICHI     | MIYASHITA, HISAYUKI | MIYAZAKI, HITOSHI   | MIYAZAKI, OSAMU     |
| MORITAKE, TAKASHI     | MURAKAMI, NORIKO    | NAGAHATA, TOMOMASA  | NAGASAWA, NAOKI     |
| NEGISHI, TORU         | NISHIDE, HIROKO     | NISHII, TATSUYA     | NISHIKAWA, KEIICHI  |
| NITAMI, KOTA          | NOTSU, MASAKAZU     | ODA, MASAFUMI       | ODA, SEITARO        |
| OHNO TSUYOSHI         | OHNO, KAZUKO        | OKAMOTO, HIROYUKI   | OKAZAKI, ATSUTAKA   |
| ONISHI, HIROMITSU     | ONO, KOJI           | OTAKA, YUSEI        | SAI, MASAHIRO       |
| SAKAMOTO, HAJIME      | SAKAMOTO, AYAKA     | SAKAMOTO, MASATAKA  | SAKURAI, TAKASHI    |
| SASAKI, TAKESHI       | SATO, HIROYUKI      | SATO, KENJI         | SATO, KIYOKAZU      |
| SHIBA, NORIYOSHI      | SHIBATA, EISUKE     | SHIMIZU, HIDETOSHI  | SHINODA, KAZUYA     |
| SHIRAGA, NOBUYUKI     | SUDA, YUHI          | SUGIHARA, YOSHIHITO | SUMI, KAZUYUKI      |
| SUZUKI, YOSHIAKI      | SHOHJI, TOMOKAZU    | TAGO, MASAO         | TAKAGI, HIDENOBU    |
| TAKEI, YASUTAKA       | TAKESIHTA, YOHEI    | TAKIZAWA, KENJI     | TANABE, SATOSHI     |
| TANAMI, YUTAKA        | TANOUE, SHUICHI     | TOHYAMA, NAOKI      | TOMITA, HIRONOBU    |
| TSURUMARU, DAISUKE    | TSUSHIMA, HIROYUKI  | UEMA, CHIAKI        | WATANABE, HIROSHI   |
| WATANABE, MASANORI    | YADA, NOBUHIRO      | YAMADA, SATOKO      | YAMASHITA, KAZUTA   |
| YOKOYAMA, SUMI        |                     |                     |                     |

Japanese Certifying Organization of X-ray CT Technologists for Radiological Technologists

| J-RIME DRL working   | g group      |            |             |
|----------------------|--------------|------------|-------------|
| Chair: AKAHANE,      | MASAAKI      |            |             |
| Member :             |              |            |             |
| Japan Association on | Radiological | Protection | in Medicine |

Japan Society of Medical Physics The Japanese College of Medical Physics

Japan Radiological Society Japanese Society of Interventional Radiology Japanese Society of Nuclear Medicine The Japanese Society of Nuclear Medicine Technology Japan Medical Imaging and Radiological Systems Industries Association Japanese Society for Oral and Maxillofacial Radiology

Japan Gastroenterological Endoscopy Society Japan Pediatric Cardiac CT Alliance

Japanese Society of Pediatric Radiology The Japan Association of Radiological Technologists The Japanese Orthopaedic Association The Japan Central Organization on Quality Assurance of Breast Cancer Screening

The Japanese Society for Neuroendovascular Therapy The Japanese Radiation Research Society Japanese Society of Radiological Technology

Japanese Society for Radiation Oncology

Japan Health Physics Society

| Main member      | NAGAHATA, TOMOMASA |
|------------------|--------------------|
| Main member      | KOBA, YUSUKE       |
| Main member      | TOHYAMA, NAOKI     |
| Alternate Member | KITO, SATOSHI      |
| Alternate Member | SUDA, YUHI         |
| Main member      | MIYAZAKI, OSAMU    |
| Main member      | AKAHANE, MASAAKI   |
| Main member      | BABA, SHINGO       |
| Main member      | ISHIGURO, MASANOBU |
| Main member      | MAGATSUKA, SUMIYA  |
| Main member      | NISHIKAWA, KEIICHI |
| Alternate Member | MISHIMA, AKIRA     |
| Alternate Member | OTAKA, YUSEI       |
| Main member      | TAKENAKA, MAMORU   |
| Main member      | SHOHJI, TOMOKAZU   |
| Alternate Member | NISHII TATSUYA     |
| Main member      | TANAMI, YUTAKA     |
| Main member      | SUZUKI, YOSHIAKI   |
| Main member      | YAMASHITA, KAZUTA  |
| Main member      | SAI, MASAHIRO      |
| Alternate Member | NISHIDE, HIROKO    |
| Main member      | MORITAKE, TAKASHI  |
| Main member      | HOSOYA, NORIKO     |
| Main member      | IGARASHI, TAKAYUKI |
| Alternate Member | SAKAMOTO, HAJIME   |
| Alternate Member | NEGISHI, TORU      |
| Alternate Member | MATSUBARA, KOSUKE  |
| Main member      | KITO, SATOSHI      |
| Alternate Member | TOHYAMA, NAOKI     |
| Main member      | ONO, KOJI          |
| Alternate Member | FUJIBUCHI, TOSHIOH |

J-RIME Secretariat :
KOBA, YUSUKE; CHANG, WEISHAN; AKAHANE, KEIICHI; OKUDA, YASUO; KANDA, REIKO;
NAKADA, YOSHIHIRO; MORITAKE, TAKASHI